CoTeMoO₆, Co₄TeMo₃O₁₆: Two New Cobalt Molybdotellurates

R. KOZŁOWSKI AND J. SŁOCZYŃSKI

Research Laboratories of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Krupnicza 41, 30–060 Kraków, Poland

Received June 24, 1975; in revised form December 30, 1975

It has been found that a solid-state reaction of CoMoO₄ with TeO₂ at 500°C yields a new compound of the formula CoTeMoO₆. This compound is also formed in the course of annealing of CoMoO₄-H₆TeO₆ mixtures. Another new compound, the cobalt molybdotellurate containing Te⁶⁺, was prepared by a solid-state reaction of Co₅TeO₈ with MoO₃. It has the formula Co₄TeMo₃O₁₆. Both CoTeMoO₆ and Co₄TeMo₃O₁₆ have been characterized by X-ray method. The latter has the structure of a wolframite type with the unit cell dimensions a = 4.66, b = 5.67, c = 4.96 Å, $\beta \simeq 90^{\circ}$.

Introduction

The present paper is concerned with phase and structural investigations of the products formed in the course of solid-state reactions between $CoMoO_4$ and tellurium oxides. The system Co-Te-Mo-O has been reported to catalyze allylic oxidation of olefins to unsaturated carboxylic acids, in particular oxidation of propylene to acrylic acid (1-3). The phase composition of catalysts in the Co-Te-Mo-O system, however, has not been fully explained so far. It seemed of interest to study what compounds of definite formula (if any) exist in this system. At the same time the cobalt salts of the well-known molybdotelluric acids, H₈TeMo₆O₂₄ and H₆TeMo₆O₂₄, were prepared and the products of their thermal decomposition were investigated. The results obtained have been published elsewhere (4).

Experimental

The materials used in the preparation were: CoMoO₄ \cdot H₂O, obtained by precipitation from solution according to the method described in (5); TeO_2 and H_6TeO_6 , both commercial products of chemically pure grade. The appropriate amounts of reagents were mixed with small amounts of water, homogenized, and dried. The reaction mixtures were calcined in air at the desired temperatures cooled afterwards to room temperature, and ground.

After dissolution in cold or hot concentrated HCl the samples were analyzed in the following way: Tellurium was determined colorimetrically in the form of colloidal Te obtained by reduction of Te^{4+} and Te^{6+} with stannous chloride, as well as with the weight method in the form of elemental Te. In order to determine separately Te^{4+} and Te^{6+} contents, the Bunsen–Rupp method was applied (6). Cobalt was determined colorimetrically, in a 1:1 acetone-water solution using thiocyanate method. Molybdenum was determined colorimetrically in the form of the phenylhydrazine complex in an acidic medium.

Dta and Tg curves were obtained with aid of Paulik–Paulik–Erdey apparatus in air with heating rate of 5° /min.

X-ray powder patterns were obtained with a DRON-1 diffractometer using $CuK\alpha$ radiation.

Results

1. Co₄TeMo₃O₁₆

In the course of the preparation of active catalysts for formation of acrylic acid in oxidation of propylene, small amounts of TeO₂ (2-7 wt%) were added during precipitation of $CoMoO_4 \cdot H_2O$. The precipitates with different amounts of TeO₂ were then heated for several hours at temperatures between 380 and 600°C. The obtained samples, in the course of dissolution in cold concentrated HCl, revealed the presence of small amounts of insoluble phase. The chemical analysis of this compound, performed after its dissolution in hot concentrated HCl, showed that its composition corresponded to the formula, $Co_4 TeMo_3O_{16}$, which can be formally derived from CoMoO₄ by replacing every fourth Mo⁶⁺ ion by Te⁶⁺. The results of the chemical analysis are shown in Table I.

It appeared, however, that $Co_4TeMo_3O_{16}$ was not merely a solid solution of $CoMoO_4$ and hypothetical $CoTeO_4$ since the new phase composition was independent of the $CoMoO_4$: TeO_2 ratio in the initial mixtures and the annealing temperature.

The attempts to prepare $Co_4TeMo_3O_{16}$ in larger quantities were then undertaken. When, however, $CoMoO_4-H_6TeO_6$ mixtures were calcined at 550°C, a compound containing tetravalent tellurium was formed. This indicates that the solid-state reaction to Co_4 -TeMo_3O_{16} occurs at the temperature higher than that of the $H_6TeO_6 \rightarrow TeO_2$ decomposition (H_6TeO_6 decomposes at 220°C to TeO_3 which transforms to TeO₂ at 395°C).

In view of this fact, another Te^{6+} containing reactant, thermally stable up to 500°C, had to be used. The cobalt tellurate of spinel type, Co₅TeO₈, reported by Kasper (7), stable

TABLE I

ANALYSIS OF CO4TeMO3O16

	% CoO	% TeO3	% M0O3	Co:Te:Mo ratio
Found	33.6	19.8	47.1	4.00:1.00:2.92
Calculated	33.0	19,4	47.6	4:1:3

over the temperature range 25–1200°C, has been chosen. It was obtained according to the method described in the quoted paper. Co_5TeO_8 was mixed with the appropriate quantity of MoO_3 according to the following exchange reaction:

$$Co_5TeO_8 + 4MoO_3 \rightarrow Co_4TeMo_3O_{16} + CoMoO_4.$$

The reaction mixture was heated for 24 hr at 550° C. The X-ray diffraction pattern of the product obtained revealed the presence of only Co₄TeMo₃O₁₆ and CoMoO₄. Pure Co₄TeMo₃O₁₆ was obtained by subsequent washing of the reaction product with concentrated NH₃, cold concentrated HCl, and water in order to remove the starting reactants and CoMoO₄. The sample so prepared gave an X-ray pattern showing no lines attributable to unreacted material or CoMoO₄. The

TABLE II

X-RAY POWDER DATA FOR Co₄TeMo₃O₁₆ (WOLFRA-MITE TYPE, a = 4.66, b = 5.67, c = 4.96 Å, $\beta \simeq 90^{\circ}$)

h k l	d _{obs} (Å)	$d_{ m caic}({ m \AA})$	Iobs	Icale	
010	5.70	5.68	3	2	
100	4.67	4.66	12	10	
011	3.74	3.73	12	11	
110	3.61	3.60	27	26	
111	2.916	2.913	100	100	
020	2.838	2.842	12	10	
002	2.483	2.478	14	15	
021	2.465	2.465	14	13	
200	2.330	2.328	6	7	
102	2.195	2,190	7	9	
121	2.176	2.178	10	10	
112	2.039	2.041	10	8	
211	1.974	1.975	2	1	
022	1.869	1.867	15	7	
220	1.800	1.801	7	6	
130	1.752	1.755	16	13	
202)	1 602	1.698	42	25	
221	1.093	1.691	44	33	
032)		1.505			
113}	1.503	1.501	20	18	
310)		1.497			
023)		1.428			
132}	1.429	1.432	32	28	
311		1.433			

chemical analysis confirmed the suggested composition of $Co_4 TeMo_3O_{16}$.

The powder pattern of Co₄TeMo₃O₁₆ shown in Table II displays the arrangement of lines typical for a wolframite structure type. The unit cell dimensions calculated from this pattern are: a = 4.66, b = 5.67, c = 4.96Å, $\beta \simeq 90^{\circ}$. The absence of the superlattice reflections indicates random distribution of Te and Mo atoms over the lattice positions of six-valent metal ions (M^{6+}) in a structure of wolframite type. The reflection intensities were calculated using the coordinates of atoms in a wolframite structure type given by Ülkü for FeWO₄ (8) and assuming the random distribution of Te and Mo atoms over the M^{6+} positions. The comparison of observed and calculated intensities (Table II) shows reasonable agreement, confirming the suggested structure model.

The Dta curve of $Co_4TeMo_3O_{16}$ shows a single endothermal effect at 740°C accompanied by a weight loss of 1.6%. These effects correspond to the melting of $Co_4TeMo_3O_{16}$. The X-ray examination and chemical analysis of cooled melt indicate that $Co_4TeMo_3O_{16}$ melts incongruently, decomposing to Co-MoO₄, and that Te⁶⁺ in liquid simultaneously reduces to Te⁴⁺.

2. CoTeMoO₆

The $CoMoO_4$ -TeO₂ oxide system was in vestigated by the X-ray method in order to check compound formation. The composition of investigated samples varied from pure $CoMoO_4$ to pure TeO₂. The reaction mixtures were calcined in air at 300°C for 12 hr and then, after cooling to room temperature and grinding, at 550°C for 12 hr. The results of X-ray analysis indicate that only one compound, of the composition $CoMoO_4 \cdot TeO_2$ $(CoTeMoO_6)$ is formed. In the composition range $CoMoO_4$ - $CoMoO_4$ TeO_2 , the supercooled high-temperature modification of $CoMoO_4$ and the compound $CoTeMoO_6$ have been detected. With the increasing TeO₂ content, the line intensities of CoMoO₄ decrease until complete disappearance at the $CoMoO_4$: TeO₂ = 1:1 molar ratio. In the composition range $CoMoO_4 \cdot TeO_2 - TeO_2$ the compound coexists with pure TeO₂. In order

to confirm the suggested composition of the compound, the X-ray microanalysis of the calcined $CoMoO_4$ -TeO₂ mixtures was carried out (9). The homogenous well-defined crystals of the suggested $CoO:TeO_2:MoO_3 = 1:1:1$ composition were found in the investigated samples, confirming the assumed composition, $CoTeMoO_6$, of a new phase.

The absence of $Co_4TeMo_3O_{16}$ among the reaction products indicates that this compound is not formed by two-step calcination of the $CoMoO_4 \cdot H_2O-TeO_2$ mixtures at 300 and 550°C. The formation of small amounts of $Co_4TeMo_3O_{16}$ in the first experiments seems to have been caused by the presence of residual undecomposed TeO₃ at the temperature of the solid-state reaction.

TABLE III

Ратте	Pattern	
d (Å)	Iª	
0.04		
0.04	vw	
4.43	s	
3,05	S	
3.38	m	
3.33	m	
3.12	vw	
2.912	vw	
2.814	VS	
2.628	w	
2.531	w	
2,300	vw	
2.257	w	
2.218	vw	
2,200	vw	
1.963	VWb	
1.921	vw	
1.822	m	
1.804	vw	
1.688	We	
1 669	W.	
1.609	vw	
1 589	vw.	
1.569	+ W15	
1.550	**	
1.309	w	

^a v, very; s, strong; m, middle; w, weak; b, broad.

TABLE IV

	Coordination					
Compound	Structure type	A ²⁺	M0 ⁶⁺	Reference		
MgMoO₄°	Wolframite	6	6	10, 11		
NiMoO4"		6	6	10, 11		
CoMoO ₄ "		6	6	10, 11		
FeMoO ₄ ^a		6	6	10, 11		
MnMoO ₄ ª		6	6	10, 11		
ZnMoO ₄ ª		6	6	10, 11		
ZnMoO ₄		6	6	12		
$CoMo_{3/4}Te_{1/4}O_4$		6	6 (Mo, Te)	Present		
				work		
CdMoO₄	Scheelite	8	4	13		
CaMoO ₄		8	4	13		
SrMoO₄		8	4	13		
BaMoO ₄		8	4	13		
PbMoO₄		8	4	13		
MnMoO ₄	a (MnMoO ₄)	6	4	14		
MgMoO4	а	6	4	15		
CoMoO ₄ ^b	b (CoMoO4)	6	6	16		
NiMoO₄ ^b	b	6	6	16		
FeMoO ₄ ^b	b	6	6	11		
CuMoO ₄	CuMoO ₄	6, 5	4	17		
ZnMoO ₄	ZnMoO₄	6, 5	4	18		

CRYSTALOCHEMICAL DATA FOR AMOO4-TYPE COMPOUNDS

" Prepared at high pressure (60 kbars).

^b These compounds have the high-temperature modifications of a type.

The X-ray powder data for $CoTeMoO_6$ are given in Table III. There are no structural data for this compound so far.

The Dta and X-ray examinations indicate that $CoTeMoO_6$ melts incongruently at 651°C, decomposing in this process to $CoMoO_4$.

Conclusions

The divalent metal molybdates of the general formula $AMoO_4$ crystallize in several different structure types, as shown in the Table IV. As seen from Table IV, only the high-pressure modifications of the molybdates of the small cations adopt the wolframite structure characteristic of the corresponding normal-pressure tungstates (10). The only case of the molybdate with the wolframite structure type obtained at ambient pressure is ZnMoO₄ (12).

It has been shown in the present work that the partial substitution of Mo atoms in CoMoO₄ by Te atoms results in transformation to the wolframite type structure. The doublet: Co₄TeMo₃O₁₆-high-pressure Co-MoO₄, in addition to the doublet CoWO₄high-pressure CoMoO₄, is an example of high-pressure oxide of the same structure type as that of the ambient pressure oxide with cations substituted by another element from the same periodic group.

Acknowledgments

The authors wish to thank Miss J. Komorek for assistance in preparing the samples and Dr. J. Ziółkowski for the execution of Dta measurements.

References

- 1. Pat. USA 3 240 806.
- 2. Pat. French 1 566 924.
- 3. Pat. French 1 541 629.

- 4. R. KOZŁOWSKI, Bull. Acad. Po'on. Sci. Ser. Sci. Chim. 23 (12), 1029 (1975).
- 5. J. HABER AND W. SZELEJEWSKI, Bull. Acad. Polon. Sci. Ser. Sci. Chim. 19, 497 (1971).
- 6. J. DEREŃ, J. HABER, AND J. SŁOCZYŃSKI, Chem. Anal. 6, 659 (1961).
- 7. H. KASPER, Z. Anorg. Allg. Chem. 354, 78 (1967).
- 8. D. ÜLKÜ, Z. Krist. 124, 192 (1967).
- 9. J. SŁOCZYŃSKI, to appear.
- 10. A. P. YOUNG AND C. M. SCHWARTZ, Science 141, 348 (1963).
- 11. A. W. SLEIGHT AND B. L. CHAMBERLAND, Inorg. Chem. 7 (8), 1672 (1968).

- 12. J. MEULLEMEESTRE AND E. PÉNIGAULT, Bull. Soc. Chim. France, No. 10, 3669 (1972).
- 13. L. SILLEN AND A. NYLANDER, Arkiv Kemi. A17 (4), (1943).
- 14. S. C. ABRAHAMS AND J. M. REDDY, J. Chem. Phys. 43 (7), 2533 (1965).
- 15. P. COURTINE, P. P. CORD, G. PANNETIER, J. C. DAUMAS, AND R. MONTARNAL, Bull. Soc. Chim. France No. 12, 4816 (1968).
- 16. G. W. SMITH, Acta Crystallogr. 15, 1054 (1962).
- 17. S. C. Abrahams, J. L. BERNSTEIN, AND P. B. JAMIESON, J. Chem. Phys. 48 (6), 2619 (1968).
- 18. S. C. ABRAHAMS, J. Chem. Phys. 46 (6), 2052 (1967).